

Predictive Risks of Colorectal Cancer by Machine Learning

Asia Pacific Electronic Health Records Conference

17-18 Oct 2019

John Mok

Health Informatics (Standards & Policy 3)

Acknowledgements

- Hong Kong Hospital Authority
 - Dr NT Cheung, Head and CMIO of IT&HI Division
 - Ms Vicky Fung, Senior Health Informatician
 - IT&HI colleagues

Outline

- Background
- Design
- Data science tools
 - Weka & DataRobot
- Results
- Lessons learnt

Background

 A Proof of Concept study was conducted last year – the objective was to gain some practices in Machine Learning with a clinical use case.

The RESULTS of this paper was our target

Dig Dis Sci. 2017 Oct;62(10):2719-2727. doi: 10.1007/s10620-017-4722-8. Epub 2017 Aug 23.

Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data.

Hornbrook MC¹, Goshen R², Choman E², O'Keeffe-Rosetti M³, Kinar Y^{2,4}, Liles EG³, Rust KC^{3,5}.

Author information

Erratum in

Correction to: Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data. [Dig Dis Sci. 2018]

Abstract

BACKGROUND: Machine learning tools identify patients with blood counts indicating greater likelihood of colorectal cancer and warranting colonoscopy referral.

AIMS: To validate a machine learning colorectal cancer detection model on a US community-based insured adult population.

METHODS: Eligible colorectal cancer cases (439 females, 461 males) with complete blood counts before diagnosis were identified from Kaiser Permanente Northwest Region's Tumor Registry. Control patients (n = 9108) were randomly selected from KPNW's population who had no cancers, received at ≥1 blood count, had continuous enrollment from 180 days prior to the blood count through 24 months after the count, and were aged 40-89. For each control, one blood count was randomly selected as the pseudo-colorectal cancer diagnosis date for matching to cases, and assigned a "calendar year" based on the count date. For each calendar year, 18 controls were randomly selected to match the general enrollment's 10-year age groups and lengths of continuous enrollment. Prediction performance was evaluated by area under the curve, specificity, and odds ratios.

RESULTS: Area under the receiver operating characteristics curve for detecting colorectal cancer was 0.80 ± 0.01 . At 99% specificity, the odds ratio for association of a high-risk detection score with colorectal cancer was 34.7 (95% CI 28.9-40.4). The detection model had the highest accuracy in identifying right-sided colorectal cancers.

Ŷ

CONCLUSIONS: ColonFlag[®] identifies individuals with tenfold higher risk of undiagnosed colorectal cancer at curable stages (0/I/II), flags colorectal tumors 180-360 days prior to usual clinical diagnosis, and is more accurate at identifying right-sided (compared to left-sided) colorectal cancers.

Motivation: Colorectal Cancer is more treatable if detected earlier

Colorectal cancer is the most commonest cancer in HK <u>5437 new cases of colorectal cancer in 2016</u> Screening / Examination: <u>Screening / Examination</u> <u>Screening / Examination</u>

Can ML assist to find unscreened patients at high risk of colorectal cancer?

To recommend high risk patients to have a colonoscopy...

Training Dataset Preparation for Predictive Colorectal Cancer by Machine Learning

With ML algorithm, based on very subtle changes in CBC values to predict colorectal cancer

Data Extraction and Labelling

Training Dataset: De-identified lab data retrieved from Laboratory Information System of an acute hospital

Cohort Selection

Machine Learning Workflow

Figure adapted from https://www.capgemini.com/2016/05/machine-learning-has-transformed-many-aspects-of-our-everyday-life/

Data Modelling using

Preprocess Classify Cluster Associate Select attributes Visualize Auto-WEKA			No.	
Open file Open URL Open DB Genera	te Undo Edit	Save		
Filter	[Preprocess] Classify] Cluster] Associate]	Select attributes Visualize Au	Auto-WEKA	
Choose None	Classifier			
Current relation	Sel Choose CostSensitiveClassifier -cost-	matrix "[0.0 1.0; 10.0 0.0]" -5 1	1 -W weka classifiers.trees.RandomForestP 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.0	01
Relation: 20180726 crc1yr dataset4 Attributes: 13 Instances: 9708 Sum of weights: 9708	Test options	Classifier output		
Attributes	🕞 🔘 Use training set	weka.classifiers.trees.Ra	RandomTree –K 0 –M 1.0 –V 0.001 –S 1 –do–not–check–capabilities	
	Supplied test set Set	Cost Matrix		
All None Invert Pattern	Cross-validation Folds 10	10 0		
No. Name	Percentage split % 66	Time taken to build model	al: 2.67 seconds	
2 Age		Stratified cross vali	lidation	
4 🗌 RBC	(Nom) Class	=== Summary ===		
		Correctly Classified Inst	stances 9388 96.7037 %	
	Start Stop	Incorrectly Classified In	Instances 320 3.2963 %	
	Result list (right-click for options)	Mean absolute error	0.0591	
	11:30:53 - meta CostSensitiveClassifier	Root mean squared error Relative absolute error	0.1776 111.5264 *	
11 U PLT 12 MPV	11:33:21 - meta.CostSensitiveClassifier	Root relative squared err	rror 109.1703 %	
13 Class		Total Number of Instances	25 9708	
		=== Detailed Accuracy By	/ Class ===	
		TP Rate	e FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class	
		0.986 0.284	0.716 0.980 0.986 0.983 0.305 0.814 0.991 N 0.014 0.364 0.284 0.319 0.305 0.814 0.178 Y	
		Weighted Avg. 0.967	0.697 0.963 0.967 0.965 0.305 0.814 0.969	
Remove		=== Confusion Matrix ===		
Status		a b < classifi 9313 131 a = N	fied as	
ОК		189 75 b = Y		
		-)	•

Evaluation Results from

Run Information	1.	2.	3.	4.
Scheme	Tree-J48	RandomForest	RandomForest	RandomForest +CostSensitiveClassifier (reweighted training)
Instances	9708 (Neg-9444; Pos-264)	9708 (Neg-9444; Pos-264)	9708 (Neg-9444; Pos-264)	9708 (Neg-9444; Pos-264)
Features	4 (Sex, Age, HGB, Class)	4 (Sex, Age, HGB, Class)	13 (Sex, Age, CBC, Class)	13 (Sex, Age, CBC, Class)
Test mode	10-fold CV	10-fold CV	10-fold CV	10-fold CV
Classification accuracy	97.84%	97.23%	96.67%	96.70%
TP Rate	N-1.000; P-0.208	N-0.994; P-0.216	N-0.987; P-0.235	N-0.986; P-0.284
FP Rate	N-0.792; P-0.000	N-0.784; P-0.006	N-0.765; P-0.013	N-0.716; P-0.014
Precision	N-0.978; P-1.000	N-0.978; P-0.483	N-0.979; P-0.339	N-0.980; P-0.362
Recall	N-1.000; P-0.208	N-0.994; P-0.216	N-0.987; P-0.235	N-0.986; P-0.284
F-Measure	N-0.989; P-0.345	N-0.986; P-0.298	N-0.983; P-0.277	N-0.983; P-0.319
AUC	0.581	0.685	0.781	0.814

Negative Predictive Value (NPV) – looks good

Rerun the dataset using 🖫 DataRobot

Data	Robot Data Models 🚳 Deployments Insights	Jupyter	Repository					20180726	crc1yr datase	t4.csv 🤞 📕	• • •
Project [Project Data Feature Lists Feature Associations										
≡ Menι	Q Search Feature List All Features 🗸 🖽 View Raw Data	+ Cre	ate Feature List							< 1-13 c	of 13 →
🗋 Fea	ture Name	Index	Importance \sim	Var Type	Unique	Missing	Mean	Std Dev	Median	Min	Max
	Class	13	Target	Categorical	2						
	Age			Numeric	51		62.12	10.58	63	40	99
	мсн			Numeric	247		29.19	3.56	29.80	11.60	46
	мснс			Numeric	98		33.09	1.12	33.20	24.90	37
	MCV			Numeric	552		88.04	9.05	89.30	46.60	136
	PLT	11		Numeric	625		238	116	224	3	1,814
	WBC			Numeric	311		7.98	7.62	6.80	0.10	322
	Sex			Categorical	2						
	HGB			Numeric	141		11.54	2.21	11.70	3.70	21.40
	MPV	12		Numeric	79		8.48	1.04	8.40	4.50	13.90
	RDW	10		Numeric	211		15.56	3.22	14.60	11.40	45.60
	нст			Numeric	367		0.35	0.07	0.35	0.11	0.63

Automatic Data Modelling

DataRobot Data Models 69 Deployments Insights Jupyter Repository	20180726 crc1	lyr dataset4.csv 🛛 🦂			
Leaderboard Learning Curves Speed vs Accuracy Model Comparison					
≡ Menu Q Search + Add New Model ▼ Filter Models			Metric LogLoss 🗸		
Model Name & Description	Feature List & Sample Size T	Validation	Cross Validation	Holdout	
eXtreme Gradient Boosted Trees Classifier with Early Stopping - Forest (10x) Ordinal encoding of categorical variables Missing Values Imputed eXtreme Gradient Boosted Trees Classifier with Early Stopping - Forest (10x) M110 BP69 CODEGEN MONO PRECOMMENDED FOR DEPLOYMENT	DR Reduced Features M63 👒 80.0 % 🕂		0.0904 *	0.0947	
ENET Blender M114 M64+65+60+59+62+ The second se	Multiple Feature Lists 📽 63.99 % 🕂	0.0944	0.0907	a	
Advanced GLM Blender M116 M64+65+60+59+62+	Multiple Feature Lists 📽 63.99 % 🕂	0.0944	0.0910	a	
eXtreme Gradient Boosted Trees Classifier with Early Stopping - Forest (10x) Ordinal encoding of categorical variables Missing Values Imputed eXtreme Gradient Boosted Trees Classifier with Early Stopping - Forest (10x) M103 BP69 CODEGEN MONO PAST & ACCURATE	DR Reduced Features M63 🔏 63.99 % 🕂	0.0943	0.0911		
AVG Blender M112 M63+103+61	Multiple Feature Lists 📽 63.99 % 🕂		0.0913	a	

Data Model – Feature Effects

Feature Effects

Data Model Evaluation

Lessons learnt

- Importance of good quality data for Machine Learning
- Heavy work on data Retrieval and Labelling
- Features selection requires Domain Knowledge
- Validation is critically important
- Imbalanced dataset issue
- Easy-to-use Data Science tools available for data modelling
 → empowers ordinary people to take machine learning
 initiatives into their own hands

References

- Hornbrook MC, Goshen R, Choman E, O'Keeffe-Rosetti M, Kinar Y, Liles EG, Rust KC. Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data. Dig Dis Sci. 2017 Oct.
- Kinar Y, Kalkstein N, Akiva P, Levin B, Half EE, Goldshtein I, Chodick G, Shalev V.
 Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: a binational retrospective study. J Am Med Inform Assoc. 2016 Sep; 23(5): 879–890.
- Weka. Waikato Environment for Knowledge Analysis
 <u>https://www.cs.waikato.ac.nz/ml/weka/index.html</u>
- JEN UNDERWOOD. White Paper: Moving from Business Intelligence to Machine Learning with Automation

